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The linear stability of Burgers and Lamb–Oseen vortices is addressed when the
vortex of circulation Γ and radius δ is subjected to an additional strain field of rate s
perpendicular to the vorticity axis. The resulting non-axisymmetric vortex is analysed
in the limit of large Reynolds number RΓ = Γ/ν and small strain s � Γ/δ2 by
considering the approximations obtained by Moffatt et al. (1994) and Jiménez et al.
(1996) for each case respectively. For both vortices, the TWMS instability (Tsai &
Widnall 1976; Moore & Saffman 1975) is shown to be active, i.e. stationary helical
Kelvin waves of azimuthal wavenumbers m = 1 and m = −1 resonate and are
amplified by the external strain in the neighbourhood of critical axial wavenumbers
which are computed. The additional effects of diffusion for the Lamb–Oseen vortex
and stretching for the Burgers vortex are proved to limit in time the resonance. The
transient growth of the helical waves is analysed in detail for the distinguished scaling

s ∼ Γ/(δ2R
1/2
Γ ). An amplitude equation describing the resonance is obtained and

the maximum gain of the wave amplitudes is calculated. The effect of the vorticity
profile on the instability characteristic as well as of a time-varying stretching rate
are analysed. In particular the stretching rate maximizing the instability is calculated.
The results are also discussed in the light of recent observations in experiments and
numerical simulations. It is argued that the Kelvin waves resonance mechanism could
explain various dynamical behaviours of vortex filaments in turbulence.

1. Introduction
Interest in vortex dynamics has been renewed by the discovery of strong vorticity

filaments in turbulent flows (Cadot, Douady & Couder 1995; Vincent & Meneguzzi
1991). These localized structures could play an important role in the statistical prop-
erties of turbulence (Lundgren 1982) and explain its intermittent character (Jiménez
et al. 1993). It is thus legitimate to try to understand the fundamental mechanisms
governing the dynamics of such structures, and more precisely to determine their
stability, which is the subject of this paper.

For the last thirty years, vortex stability analyses have focused on axisymmetrical
vortices with axial flow (see for instance the review of Ash & Khorrami 1995) in order
to explain the so-called ‘vortex breakdown’ phenomenon observed experimentally in
pipes (Sarpkaya 1971), cylinders with rotating ends (Escudier 1984) and on delta
wings (Peckham & Atkinson 1957). Saffman (1992) has conjectured that the same
phenomenon could explain the bursting of vortex filaments in turbulence but a
complete theory is still lacking. Moreover, it is still unclear whether vortices in
turbulent flows exhibit a mean axial flow which is required for ‘vortex breakdown’. In
this paper, we shall consider vortices without mean axial flow.



146 C. Eloy and S. Le Dizès

Vortex filaments have been generally associated with axisymmetric vortices for
which the vorticity is simultaneously concentrated by axial stretching and diffused by
viscosity. The simplest models are the famous Burgers vortex which is the equilibrium
vortex configuration in a uniform stretching field, and the Lamb–Oseen vortex which
is an unstretched diffusing vortex. Recent works have shown the influence on intense
vortex filaments of a pure shear flow (Kawahara et al. 1998) or a non-uniform
axisymmetric strain field (Verzicco, Jiménez & Orlandi 1995). Non-axisymmetric
solutions were obtained by Moffatt, Kida & Ohkitani (1994) and Jiménez, Moffatt
& Vasco (1996) (see also Ting & Tung 1965) by submitting the Burgers and Lamb–
Oseen vortices to an additional plane strain field with principal axes perpendicular
to the vortex axis. Non-axisymmetric corrections were calculated in the limit of
large Reynolds numbers. They were shown to induce interesting modifications in the
energy dissipation distribution which are in remarkably good agreement with what
has been observed in numerical simulations of two- and three-dimensional turbulence
(see Jiménez et al. 1996 and Moffatt et al. 1994 respectively). However, filaments are
also known to exhibit a rich variety of dynamical behaviour which includes bursting,
spliting and merging (see Arendt, Fritts & Andreassen 1998, for instance). It is then
natural to address the question of the stability of the above solutions.

So far, the very few existing stability analyses have in general considered the
Burgers and Lamb–Oseen vortices without external strain. Bernoff & Lingevitch
(1994) analysed the two-dimensional stability of the Lamb–Oseen vortex: they showed
that the vortex relaxes on a time scale faster than the viscous time scale to an
axisymmetric state when perturbed. More results have been obtained for the Burgers
vortex but a complete three-dimensional stability analysis is still lacking. Robinson
& Saffman (1984) and Prochazka & Pullin (1995) showed the stability with respect
to two-dimensional perturbations. These results were recently extended by Prochazka
& Pullin (1998) for a non-axisymmetric vortex. Using energy methods, Leibovich &
Holmes (1981) proved that no finite critical viscosity guarantees the global decreasing
of the perturbations of the Burgers vortex. Rossi & Le Dizès (1997) analysed the
effect of the stretching field on the axial wavenumber of the perturbations. They
showed that the discrete part of the temporal spectrum of any stretched vortex can
only be associated with perturbations without axial dependency.

One of the main effects of imposing an additional external strain, perpendicular to
the vortex axis, is to modify the form of the vortex core from circular to elliptical
(Robinson & Saffman 1984; Moffatt et al. 1994; Jiménez et al. 1996). Such an effect is
expected to be destabilizing since the elliptical character of the streamlines is indeed
known to be a source of instability (Pierrehumbert 1986). This so-called ‘elliptical
instability’ has been put on firm ground in the context of a pure elliptical flow by Bayly
(1986), Landman & Saffman (1987), Waleffe (1990) and Lifschitz & Hameiri (1991)
who interpreted the instability mechanism as a parametric excitation of inertial waves.
Their analysis has also been extended to more complex configurations to account for
stratification (Miyazaki & Fukumoto 1992), Coriolis effects (Craik 1989; Cambon et
al. 1994), stretching (Le Dizès, Rossi & Moffatt 1996) time-dependency (Foster &
Craik 1996; Bayly, Holm & Lifschitz 1996) and non-uniform vorticity profile (Leblanc
& Cambon 1998; Sipp & Jacquin 1998). Very few experiments have been designed to
study the elliptical instability and only qualitative results have been published so far
(Vladimirov & Tarasov 1982; Malkus 1989; Gledzer & Ponomarev 1992). However,
this instability is now recognized as a fundamental instability which could explain
the three-dimensional transition of numerous flows such as wakes (Williamson 1996;
Leweke & Williamson 1998b), mixing layers (Landman & Saffman 1987) and vortex
pairs (Leweke & Williamson 1998a).
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Surprisingly, the elliptical instability has not immediately been related to the short-
wave instability identified by Widnall, Bliss & Tsai (1974) in vortex rings and analysed
by Tsai & Widnall (1976) or Moore & Saffman (1975) in the context of two-
dimensional inviscid vortices in a weak external strain field (see the presentation of
both instabilities in Saffman 1992). Tsai & Widnall (1976) considered the case of a
Rankine vortex. They showed that stationary helical waves of azimuthal wavenumbers
m = −1 and m = 1 are amplified for certain values of their wavenumber by the
external strain field. Moore & Saffman (1975) interpreted this instability as a resonance
phenomenon and gave a formal extension of Tsai & Widnall’s analysis to a large
class of non-viscous two-dimensional vortices. Although Waleffe (1990) did not point
out the connection, his analysis permits the Tsai–Widnall–Moore–Saffman (TWMS)
instability and the elliptical instability to be linked. He formed, from a superposition
of most unstable inertial waves, the resonant helical modes of Tsai & Widnall (1976)
in the Rankine vortex core. He also calculated the maximum growth rate of the
inertial waves and obtained a value comparable to the growth rate given in Tsai &
Widnall (1976) for the resonant helical waves. This explains why the combination
of helical waves m = −1 and m = +1 is the most unstable mode for the elliptically
perturbed Rankine vortex. For more realistic vortices, the connection between both
instabilities is not as simple. It would require the use of more sophisticated techniques
(Bayly et al. 1996) to extend the elliptical instability to a non-uniform vorticity profile.
Contrarily to the Rankine vortex, it is then not guaranteed that the stationary helical
waves analysed in Moore & Saffman (1975) for a large class of vortices constitute
the most unstable mode. Despite this point which is discussed again in the last
section, Moore & Saffman’s (1975) analysis is useful to obtain sufficient conditions
of instability. In this paper we shall demonstrate that their analysis applies to a large
family of stretched vortices which includes the Burgers and Lamb–Oseen vortices if
the external strain field acting on the vortices is small and if the Reynolds number is
large.

This paper is organized as follows. The analysis and the results are first presented
for Burgers and Lamb–Oseen vortices (§2–§4) and then extended to a large class
of arbitrary stretched vortices in §5–§6. In §2, the basic flow solution is presented.
In particular, the corrections to the Burgers and Lamb–Oseen vortices due to the
external strain are given. Section 3 starts with a simple description of the instability
mechanism following Moore & Saffman’s (1975) analysis. The additional effects of
viscosity and stretching are then discussed: they are shown to limit in time the growth
of the resonant helical waves. This leads to a rough estimate for the maximum gain of
the wave amplitude. In §4, an asymptotic analysis of the instability is carried out for
the distinguished scaling that gives an O(1) gain. An amplitude equation describing
the resonance is obtained as well as a precise value for the gain. The instability
characteristics are analysed in §5. The influence of the vorticity profile on the local
growth rate is first discussed. Then, the effect of the stretching field on the maximum
gain is considered. For this purpose, a generalization of the analysis to an arbitrarily
stretched vortex is carried out. In the last section, the general results are presented in
the context of turbulent flows.

2. Burgers and Lamb–Oseen vortices in a non-axisymmetric strain field
Burgers and Lamb–Oseen vortices are both axisymmetric Gaussian vortice solutions

of the incompressible Navier–Stokes equations. They are respectively stretched and
unstretched along their axis (the z-axis hereafter). They both admit an axial vorticity
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field of the form

ωz =
Γ

δ2
G
( r
δ

)
, (2.1)

where G is the normalized Gaussian function:

G(x) =
1

4π
e−x

2/4. (2.2)

They are characterized by their circulation Γ and radius δ. For the Burgers vortex, the
radius is δB = (ν/γ)1/2 where ν is the kinematic viscosity and γ the stretching rate of
the external stretching field U γ = (− 1

2
γx,− 1

2
γy, γz). The Burgers vortex corresponds

to the equilibrium configuration for which the spreading of vorticity due to viscous
diffusion is exactly balanced by the concentration process induced by stretching. The
Lamb–Oseen vortex is only subject to viscous diffusion; its radius δL increases with
time according to δL = (νt)1/2 while its circulation Γ remains constant.

When an external strain field U s = (sx,−sy, 0) is added perpendicularly to the
vortex axis, the axisymmetric vortex is no longer a solution of the Navier–Stokes
equations. However, in the limit of large Reynolds numbers (RΓ = Γ/ν), an asymptotic
study shows that the main features of the vortex are conserved near its core. In the
case of the Lamb–Oseen vortex, Ting & Tung (1965) were the first to calculate the
vorticity corrections due to the strain. Their asymptotic analysis has been recently
re-examined and compared to two-dimensional numerical simulations of vortical
structures in turbulent flows by Jiménez et al. (1996). For the Burgers vortex, the
analysis has been carried out by Moffatt et al. (1994). Like Ting & Tung (1965) and
Jiménez et al. (1996), they obtained in the high Reynolds numbers limit a first order
correction to the vorticity distribution (2.1) proportional to the strain rate s. For both
vortices, the axial vorticity has a similar expression which reads

ωz =
Γ

δ2
G
( r
δ

)
+ sη

( r
δ

)
F
( r
δ

)
sin 2θ + O

(
sγδ2

Γ
,
s2δ2

Γ

)
, (2.3)

where

η(x) =
x2

4
(
ex2/4 − 1

) , (2.4)

and F(x) satisfies

d2F

dx2
+

1

x

dF

dx
− 4

x2
F + η(x)F = 0. (2.5)

The function F is subject to the boundary conditions F(x) ∼ s0x
2/4 near zero and

F(x) ∼ x2/4 near infinity, which yields, after numerical integration, s0 ≈ 2.525. The
function F measures the interaction of the vortex with the strain field. In particular,
the ratio 4F(x)/x2 which is displayed on figure 1 gives near 0 and +∞ the non-
axisymmetric part of the strain rate. It shows that the strain rate near 0 is more than
2.5 times the strain rate at infinity. We shall see in §5 the importance of this result in
interpreting the instability characteristics.

The full velocity and pressure field associated with (2.3) is

Vr = sδ2 4F(r/δ)

r
cos 2θ − γ

2
r + O

(
s2δ3/Γ , sγδ3/Γ

)
, (2.6a)

Vθ =
Γ

δ
V (r/δ)− 2sδF ′(r/δ) sin 2θ + O

(
s2δ3/Γ , sγδ3/Γ

)
, (2.6b)

Vz = γz, (2.6c)
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Figure 1. Plot of 4F/x2 as a function of x. Near 0 and +∞, this function gives the
non-axisymmetric part of the strain rate because F is proportional to x2.

P = − Γ
2

2δ2

[
V (r/δ)

]2
+ s

Γ

δ
F ′(r/δ)V (r/δ) sin 2θ + O(s2δ, sγδ), (2.6d)

where V (x) is the azimuthal velocity profile of the Burgers and Lamb–Oseen vortices:

V (x) =
1− e−x2/4

2πx
. (2.7)

The validity of approximation (2.6 a–d ) is discussed in Moffatt et al. (1994),
Jiménez et al. (1996) and Prochazka & Pullin (1998). As long as Γ/δ2 � s and
Γ/δ2 � γ (this second condition is always satisfied for the Lamb–Oseen vortex
since γ = 0), the approximation is valid in the vortex core and can be applied
up to r = O([Γ/(δ2s)]1/4δ). As explained in Jiménez et al. (1996), the domain of
validity can be extended, by an adequate modification of the coordinates, up to
r = O([Γ/(δ2s)]1/2δ), which corresponds to the limit of the region dominated by
vorticity. For larger r, the strain field becomes dominant and the vorticity is no
longer axisymmetric at leading order. Prochazka & Pullin (1998) recently obtained
an approximation of the flow in that region. For the Burgers case, Moffatt et al.
(1994) discussed the nature of the approximation according to the value of the para-
meter λ ≡ 2s/γ which measures the departure from axisymmetry in the strain field.
For 0 < λ < 1 (non-axisymmetric axial strain) the vorticity presumably remains
stationary and tends to the expression obtained by Robinson & Saffman (1984):
ωz ∝ exp[(s − γ/2)x2 − (s + γ/2)y2]. By contrast, for λ > 1 (bi-axial strain), the
vorticity field is expected to become time-dependent for large r, and to be ‘stripped
away’ in the direction of positive strain (x-direction with the above notation). Moffatt
et al. (1994) evaluated the time scale of this process and concluded that the vortex
(defined by the expressions (2.6a–d )) could survive an exponential long time before
being ultimately destroyed. This analysis was refined and corrected by Prochazka &
Pullin (1998) but they reached the same conclusion. In the present study, we shall
not consider the description of the vortex in the far field, since this region, where the
vorticity is already exponentially small, has a negligible influence on the instability
process described below.

For future use, in §5, it is important to point out that (2.3) and (2.6a–d ) are also
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valid if γ varies slowly or if γ is different from 0 (Lamb–Oseen vortex) or δ2/ν
(Burgers vortex). However, in such cases, the vortex radius has a particular time
evolution which will be calculated in §5.

3. Instability mechanism
Let us assume for the moment that stretching and viscous diffusion are negligible.

Expression (2.3) for the vorticity field derived in the previous section then describes
a two-dimensional, inviscid and stationary vortex. The stability of such vortices with
respect to particular three-dimensional perturbations was analysed in a general setting
by Moore & Saffman (1975). The main ideas of their analysis can be applied to the
present case as follows.

In the limit of small external strain (s � Γ/δ2), the vorticity is given, at leading
order, by expression (2.1). The property of axisymmetry of this expression guarantees
that Kelvin waves can be added, as neutral perturbations, to the basic flow. Such
waves are of the form:

v = Φ(r)ei(kz−ωt+mθ) + c.c., (3.1)

where the frequency ω is related to the axial and azimuthal wavenumbers k and m
through the dispersion relation D(ω, k, m) = 0.

The effect of the strain field on these perturbations can be apprehended by rewriting
the strain field in cylindrical coordinates: U s = (sr cos 2θ,−sr sin 2θ, 0). Indeed, this
expression shows that the interaction of a Kelvin wave of azimuthal wavenumber
m with the strain field generates two additional waves of azimuthal wavenumbers
m ± 2 (see also the next section). As a consequence, the two waves m and m + 2
resonate via the strain when they satisfy D(ω, k, m) = D(ω, k, m + 2) = 0. Using the
symmetry property of the dispersion relation, i.e. D(ω, k, m) = D(−ω, k,−m), Moore
& Saffman (1975) deduced that stationary helical waves (ω = 0 and m = ±1) sat-
isfy the above resonance condition for any dimensionless axial wavenumber κ such
that D(0, κ/δ, 1) = 0. They proved that this particular combination of helical modes
is always amplified by the strain and gives rise to an instability. This result was
simultaneously obtained by Tsai & Widnall (1976) for the Rankine vortex. Referring
to both studies, we shall henceforth name it the ‘Tsai–Widnall–Moore–Saffman
(TWMS) instability’. This instability is characterized by a growth rate σ = O(s)
and a band ∆κ = O(sδ2/Γ ) of unstable dimensionless wavenumbers kδ around the
critical values κ.

The main effect of viscosity and stretching is to introduce a transient aspect
to this instability. Let us first discuss the case of the unstretched Lamb–Oseen
vortex. For such a vortex, the radius δL increases as (νt)1/2, i.e. on a time scale
tL = O(δ2/ν) = O(δ2RΓ/Γ ). So, if we start from an unstable configuration of helical
waves, after a finite period of time, kδ leaves the unstable band around a critical
wavenumber κ and the helical waves are no longer unstable (see sketch in figure 2a).
In other words, the growth of the unstable helical waves is only transient. The gain of
amplitude G of these waves across the unstable domain can be roughly estimated as
G ∝ exp(τσ), where τ is the time spent in the unstable band and σ the mean growth
rate of the instability. Here τ = O((∆κ)tL) = O

(
sRΓδ

4/Γ 2
)

and σ = O(s). The gain of

amplitude is then of the form G ∝ exp
(
s2RΓδ

4/Γ 2
)
. If s� Γ/

(
δ2R

1/2
Γ

)
, the gain of

amplitude of the helical waves is expected to be exponentially large: the vortex can
be considered as unstable.

For the Burgers vortex, stretching plays the same role as diffusion by modifying the
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Figure 2. Time evolution of the product kδ for the Lamb–Oseen vortex (a) and for the Burgers
vortex (b). In both cases, kδ remains a finite time in the unstable band around κ.

wavenumber of the perturbations. Indeed, if we consider an arbitrary perturbation, the
action of the stretching field U γ = (− 1

2
γx/− 1

2
γy) is to decrease its axial wavenumber

according to kB = k0 exp(−γt). Such an evolution is the consequence of a degeneracy
for large z which requires the conservation of the phase factor eikz for any wave in
the stretching field U γ: (

∂

∂t
+U γ · ∇

)
eikz = 0. (3.2)

This result has already been used by Craik & Criminale (1986) and Lifschitz &
Hameiri (1991) for the local stability analysis of flows near stagnation points. It is
also the main ingredient of Rossi & Le Dizès (1997).

As for the Lamb–Oseen vortex, if we start from an unstable configuration of helical
waves, after a finite time of order τ = ∆κ/γ = O(sRΓδ

4/Γ 2), the product kδ would
leave the unstable band ∆κ (see sketch in figure 2 b). The growth is then also transient

and the same conclusion holds for the Burgers vortex: it is unstable if s� Γ/(δ2R
1/2
Γ ).

Since the Burgers vortex radius is δ = (ν/γ)1/2, this case corresponds to a strong bi-

axial strain configuration with s/γ � R
1/2
Γ . In particular, if s ∼ γ, the stretching

ensures the stability of the Burgers vortex with respect to the TWMS instability. Note
however that, when 2s > γ, the vortex is also subject to a tilting instability (Prochazka
& Pullin 1998) which tends to align the vortex axis with the direction of maximum
extensional strain. The time scale O((s− γ)−1) of this instability is comparable to the
TWMS instability time scale when s � γ. But the tilting instability is a nonlinear
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phenomenon for an infinite vortex as it requires a finite-amplitude perturbation to
modify by an infinitesimal angle the direction of the vortex axis. It will not be
considered in the following analysis.

In the next section, a more detailed analysis of the TWMS instability is carried out.
More specifically, the maximum gain of amplitude of the helical waves is computed
for both the Burgers and the Lamb–Oseen vortices for the distinguished scaling

s ∼ Γ/(δ2R
1/2
Γ ).

4. Asymptotic analysis for the distinguished scaling
Let us consider a Burgers or Lamb–Oseen vortex in a strain field of rate s (at

infinity) such that

s∗ ≡ 2sδ2R
1/2
Γ

Γ
= O(1). (4.1)

Using dimensionless quantities (the characteristic time and space variables are δ2/Γ
and δ respectively), expressions (2.6a–d ) for the velocity and pressure field reduce to

Vr = εs∗
2F(r∗)
r∗

cos 2θ + O(ε2), (4.2a)

Vθ =
1− e−r∗2/4

2πr∗
− εs∗F ′(r∗) sin 2θ + O(ε2), (4.2b)

Vz = O(ε2) (ε2z for Burgers and 0 for Lamb–Oseen), (4.2c)

P = −1

2

(
1− e−r∗2/4

2πr∗

)2

+ εs∗F ′(r∗)V0(r
∗) sin 2θ + O(ε2), (4.2d)

where the small expansion parameter is defined by ε = R
−1/2
Γ . In (4.2a–d ), r∗ (stars are

dropped thereafter) denotes the dimensionless radial coordinate. For the Lamb–Oseen
vortex, this coordinate is time-varying due to the evolution of the dimensionless δ as
δL = εt1/2 (note that for t = t0 = RΓ , δL = 1).

The axial component Vz is associated with the stretching field. For the Burgers
vortex, that component is not negligible for large z and has a global influence on the
perturbations: as discussed above, it modifies the wavenumber of the perturbations
according to k ∝ exp(−ε2t). From an asymptotic point of view, this effect results from
the condition of matching between the inner region z � ε−2 dominated by the vortex
and the outer region z � ε−2 dominated by axial stretching. In terms of the slow
variable T = ε2t, one can then write

kB(T ) = k0e
1−T , (4.3)

where k0 is the dimensionless wavenumber at T = 1, or equivalently at t = t0 = RΓ .
For the Lamb–Oseen vortex, the dimensionless wavenumber kL varies due the

evolution of δL as

kL(T ) = k0T
1/2. (4.4)

Let us then consider a perturbation to the basic flow (4.2a–d) with such evolving
wavenumbers and write the total velocity and pressure field as

(Ur,Uθ,Uz,Π) = (Vr, Vθ, Vz, P ) + (vr, vθ, vz, p)e
ik(T )z , (4.5)

where k(T ) is given by (4.3) for the Burgers vortex and (4.4) for the Lamb–Oseen
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vortex. For both vortices, the linearized equations obtained from the incompressible
Navier–Stokes equation for the four-component vector v = (vr, vθ, vz, p) can be written
in the form

∂

∂t
(Lv) +M(k)v = εs∗

(
ei2θN + e−i2θN

)
v, (4.6)

where L, M(k) and N are the following operators (the primes denote differentiation
with respect to r):

L =

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 , (4.7a)

M(k) =



Ω
∂

∂θ
−2Ω 0

∂

∂r

2Ω + rΩ′ Ω
∂

∂θ
0

1

r

∂

∂θ

0 0 Ω
∂

∂θ
ik

∂

∂r
+

1

r

1

r

∂

∂θ
ik 0


, (4.7b)

N =



−F
r

∂

∂r
− F ′

r
+
F

r2
− i

F ′

2r

∂

∂θ
−i

2F

r2
+ i

F ′

r
0 0

−i
F ′

2
− i

F ′

2r
−F
r

∂

∂r
+
F ′

r
− F

r2
− i

F ′

2r

∂

∂θ
0 0

0 0 −F
r

∂

∂r
− i

F ′

2r

∂

∂θ
0

0 0 0 0


,

(4.7c)
Ω(r) denotes the azimuthal velocity divided by r:

Ω(r) =
1− e−r2/4

2πr2
, (4.8)

and N is the matrix whose elements are the complex conjugates of those in N .
As explained in the previous section, the perturbation v is assumed to be, at

leading order, a combination of resonant stationary helical Kelvin waves of azimuthal
wavenumbers m = ±1

v± = Φ±(r) exp(iκz ± iθ). (4.9)

These waves satisfy an equation which is obtained by neglecting the right-hand side
of (4.6) and the time-variation of k:

M(κ)
(
Φ±e±iθ

)
= 0, (4.10)

where Φ± is finite at zero and vanishes at +∞. These boundary conditions select
‘vortex modes’, that is perturbations which are localized in the neighbourhood of
the vortex core and potential for large r. This latter property guarantees that, as
in Tsai & Widnall (1976), the vortex modes are not influenced by the outer region
dominated by the potential strain field. System (4.10) can be reduced to a boundary
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Figure 3. Four components of the eigenvector Φ+(r) = (iur, uθ, uz , p) for κ = 1.13:
+, ur; ©, uθ; 4, uz; 5, 30× p.

value problem for the pressure (see Moore & Saffman 1975 and Saffman 1992) which
gives after numerical integration the resonant wavenumbers κ and their corresponding
eigenmodes:

Φ± = (±iur, uθ,±uz, p), (4.11)

where ur , uθ , uz and p are real functions of r. Figure 3 shows the components of Φ+ for
the smallest non-zero resonant wavenumber κ ≈ 1.13. Larger resonant wavenumbers
are given in table 1 below.

According to the above discussion, the helical modes are resonant during a finite
period of time of order sRΓδ

4/Γ 2, i.e. of order ε−1 with the scaling (4.1). This time
scale is slow compared to the O(1) vorticity time scale but fast compared to the O(ε−2)
evolution scale of k. The description of the resonance phenomenon in the limit of
small ε then requires the introduction of a new intermediate time variable

T =
T − 1

ε
= ε(t− t0). (4.12)

In equation (4.6), time-dependency only appears through the operator M . The
transient effect occurring on the intermediate time scale T = O(1) is then taken into
account by expanding M in Taylor series with respect to the small parameter ε

M(k) = M(κ) + iεT
dk

dT

∣∣∣∣
T=1

Q + O(ε2), (4.13)

where

Q =

 0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 . (4.14)

The derivative dk/dT is obtained from (4.3) and (4.4):

dk

dT

∣∣∣∣
k0=1, T=1

= ξκ, (4.15)

with ξ = ξL = 1
2

for the Lamb–Oseen vortex and ξ = ξB = −1 for the Burgers vortex.
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Following classical asymptotic methods (see for instance Van Dyke 1975), pertur-
bations are also expanded in terms of ε as

v = v0(T , θ, r) + εv1(T , θ, r) + ε2v2 + · · · , (4.16)

where the leading-order term v0 is a combination of the resonant waves multiplied
by a slowly varying amplitude:

v0 = A+(T )eiθΦ+(r) + A−(T )e−iθΦ−(r). (4.17)

Upon rewriting equation (4.6) with (4.13) for M and (4.16) for v, one obtains an
equation for v up to O(ε2) terms. The above choice for v0 guarantees that O(1) terms
vanish. Cancelling terms at the order ε leads to the following equation for v1:

∂

∂t
Lv1 +M(κ)v1 = − ∂

∂T
Lv0 − iξκQT v0 + s∗

(
ei2θN + e−i2θN

)
v0. (4.18)

This equation is solved by taking v1 of the form

v1 = v+
1 (T , r)eiθ + v−1 (T , r)e−iθ + w+

1 (T , r)e3iθ + w−1 (T , r)e−3iθ. (4.19)

Such a choice gives for v+
1 and v−1

M+(κ)v+
1 = −∂A

+

∂T
LΦ+ − iξκTA+QΦ+ + s∗A−NΦ−, (4.20a)

M−(κ)v−1 = −∂A
−

∂T
LΦ− − iξκTA−QΦ− + s∗A+NΦ+, (4.20b)

where M± denotes the operator M , where ∂/∂θ is replaced by ± i.

The condition of solvability of these non-homogeneous equations requires that the
forcing term (right-hand side) of each equation is orthogonal to the adjoint mode
of the homogeneous operator (left-hand side). For each operator M±(κ), the adjoint
mode satisfies

M±A (κ)Φ±A = 0, (4.21)

where M±A (κ) is defined by 〈X |M±(κ)Y 〉 = 〈M±A (κ)X |Y 〉 with the following scalar
product:

〈X |Y 〉 =

∫ ∞
0

(
X1Y1 +X2Y2 +X3Y3 +X4Y4

)
dr. (4.22)

Equation (4.21) is similar to (4.10) and its integration can be carried out with the
same numerical method. In particular, the adjoint modes Φ±A are found to satisfy the
same symmetry property (4.11) as Φ±. As a result, the solvability conditions for (4.20)
reads

L++ ∂A
+

∂T
+ iξκQ++TA+ − s∗N+−A− = 0, (4.23a)

L−−
∂A−

∂T
+ iξκQ−−TA− − s∗N−+

A+ = 0, (4.23b)

where the notation N+− stands for 〈Φ+
A |NΦ−〉. The symmetry property (4.11) yields
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κ q × 103 qκ× 103 n s∗cBurgers s∗cLamb
1.13 11.3 12.8 0.6895 0.1304 0.0924
1.97 6.86 13.5 0.6944 0.1331 0.0946
2.80 4.91 13.7 0.6957 0.1340 0.0952
3.63 3.82 13.9 0.6961 0.1350 0.0954
4.44 3.12 13.9 0.6957 0.1350 0.0954

Table 1. Different values of the computed scalar products q and n (defined in the text in (4.24a–c))
and s∗c = (|2qξκ| /πn2)1/2 for the first five κ.

the following relations between the coefficients:

L++ = L−−, (4.24a)

Q−−

L++
= −Q

++

L++
= q, (4.24b)

N+−

L++
=
N
−+

L++
= n, (4.24c)

where q and n are real numbers. Equations (4.23a, b) become

∂A+

∂T
− iqξκTA+ − s∗nA− = 0, (4.25a)

∂A−

∂T
+ iqξκTA− − s∗nA+ = 0. (4.25b)

The coefficients q and n are the same for both vortices but ξ has a different value for
each vortex (ξB = −1 and ξL = 1/2). Numerical values for each resonant wavenumber
κ are given in table 1.

The amplitude equations (4.25a, b) can be reduced to a single equation

∂2A±

∂T
2

+
(∓iqξκ+ (qξκT )2 − (s∗n)2

)
A± = 0, (4.26)

which is easily solved in term of parabolic cylinder functions Dµ (see Bender & Orszag
1978) as

A±(T ) = a±1 D∓iµ(ηe∓sgn(ξ)iπ/4T ) + a±2 D∓iµ(−ηe∓sgn(ξ)iπ/4T ), (4.27)

with

µ =
(s∗n)2

2qξκ
, (4.28a)

η = |2qξκ|1/2. (4.28b)

Using (4.25a, b) at T = 0, the following relation between the coefficients a±1 and a±2
can be deduced:

a±1 − a±2
a∓1 + a∓2

= K± =
−s∗n√

2ηe∓sgn(ξ)iπ/4

Γ
(± 1

2
iµ
)

Γ
(

1
2
± 1

2
iµ
) , (4.29)

where Γ(x) stands for the usual Gamma function.
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Figure 4. Typical temporal behaviour of the perturbation amplitude
∣∣A±∣∣. The graph shows the

time evolution of
∣∣A±∣∣ with the initial conditions (at T = −100): A+ = i, A− = −i (in this case, A+

and A− remain complex conjugates) for the smallest resonant wavenumber κ ≈ 1.13 and s∗ = 0.2
in the case of the Burgers vortex. The gain of the amplitude G is close to Gmax ≈ 20.6.

The behaviour of A± given by expression (4.27) has already been analysed in Le
Dizès et al. (1996). For small |T |, A± grows as A±(T ) ∝ exp

(
s∗nT

)
whereas A± has,

for large |T |, an oscillating behaviour of the form

A±(T ) ∼
T→−∞

A±−∞
(
η|T |)∓iµ

exp
(±i(ηT )2/4

)
, (4.30a)

A±(T ) ∼
T→+∞

A±+∞
(
η|T |)∓iµ

exp
(±i(ηT )2/4

)
, (4.30b)

where A±−∞ and A±+∞ are amplitude factors at T = −∞ and T = +∞ respectively.
A typical evolution for A± is shown on figure 4. Using the asymptotic expansions of
the parabolic functions and expression (4.29), both amplitude factors can be related
through the expression

A±+∞ =
2B±A∓−∞ − (B+B− + 1)A±−∞

B+B− − 1
, (4.31)

where B± = K± tanh( 1
2
sgn(ξ)πµ) and |B±|2 = B+B− = tanh( 1

2
π|µ|). This expression

shows that the helical wave amplitudes, before and after the resonance, are connected.
The gain of amplitude across the region of resonance can be defined by the quantity

G =

( |A+
+∞|2 + |A−+∞|2
|A+−∞|2 + |A−−∞|2

)1/2

. (4.32)

This gain is calculated exactly as

G2 = g1 + g2

a+ a

1 + |a|2 , (4.33)

where

g1 =
|B+B− + 1|2 + 4|B±|2
|B+B− − 1|2 = 1 + 8 sinh

π|µ|
2

cosh
π|µ|

2
eπ|µ|, (4.34a)
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Figure 5. Plot of the maximum gain Gmax as a function of s∗/|ξ|1/2 for the smallest resonant
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g2 = 4|B+| B
+B− + 1

|B+B− − 1|2 = 4

(
tanh

π|µ|
2

)1/2

cosh
π|µ|

2
e3π|µ|/2, (4.34b)

a =
B+A−−∞
|B+|A+−∞

. (4.34c)

The gain G depends on the helical wave decomposition before the resonance. This
dependence appears through the coefficient a which can take any value in the complex
plane according to the relative amplitude and phase of the two waves before the
resonance. This leads to the inequality g1 − g2 6 G2 6 g1 + g2 where the maximum
value Gmax = (g1 + g2)

1/2 is reached for a = 1. In the limit eπ|µ| � 1, Gmax reduces to
a simple expression

Gmax ∼ 2eπ|µ| = 2e(s∗/s∗c )2

, (4.35)

where

s∗c
2

=
|2qξκ|
πn2

. (4.36)

The values of s∗c for each vortex and each resonant wavenumber are given in table 1.

The behaviour of Gmax as a function of s∗/|ξ|1/2 is displayed on figure 5.
This figure constitutes an important result of the paper. Using |ξB | = 1 and

|ξL| = 1/2, it gives the maximum gain Gmax of the helical modes for the Burgers
and Lamb–Oseen vortices in a strain field. Assuming that Gmax > 104 is sufficient to
destabilize the vortex, it then provides an explicit criterion of ‘instability’ which is
s∗ & 0.4 for the Burgers vortex, and s∗ & 0.3 for the Lamb–Oseen vortex. Figure 5
will also be used in the next section to determine the instability properties of an
arbitrarily stretched vortex.

5. Instability characteristics
In the first part of this section, the dependence of the instability characteristics

on the strain rate is analysed. In particular, it is argued that the strain rate in the
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Rankine Gaussian

κ1 κ2 κ1 κ2 Elliptical

κ 2.50 4.35 1.13 1.97 —
σ/s∞ 1.1416 1.1390 1.3790 1.3888 0.5625
σ/s0 0.5708 0.5694 0.5462 0.5500 0.5625

Table 2. Growth rate σ of the TWMS instability for the Rankine vortex, the Gaussian vortex and
the pure elliptical flow for the first two resonant wavenumbers κ according to the strain rate at
r = ∞ and r = 0 (s∞ and s0 respectively).

vortex core could be the main parameter governing the transient growth rate of the
instability. The effect of the vorticity profile on that parameter is also addressed
using a simple example. In the second part, we focus on the role of stretching in
the instability process. The present study is generalized to Gaussian vortices in an
arbitrary time-dependent stretching field.

5.1. Dependence on the strain rate

The coefficient n in (4.23a, b) measures the strength of the instability. Without stretch-
ing or viscous effects, the growth rate of the helical waves is (written in a dimensional
form)

σ = 2ns. (5.1)

This quantity corresponds to the growth rate of the TWMS instability in the case of
a Gaussian vorticity profile. In table 2, this growth rate is compared to the values
obtained for the Rankine vortex for the two smallest non-zero wavenumbers (Tsai
& Widnall 1976). The growth rate is normalized by the strain rate at infinity in the
third row, and by the strain rate in the vortex centre in the last row. It is important
to point out that growth rates are very similar when normalized with the strain rate
in the vortex centre and very close to the value σE/s = 9

16
= 0.5625 obtained for

a pure elliptical flow (Waleffe 1990). This emphasizes the intimate link between the
TWMS instability and the elliptical instability already mentioned in the introduction.
This result was expected for large wavenumbers because of the localization near the
vortex centre of such modes. However, in the present case, it is surprising to observe
so small a correction with respect to the elliptical instability characteristics as the
unstable modes spread over a fairly large region (see figure 3). Based on the results for
the Rankine and Gaussian vortices, it is natural to conjecture that for other vorticity
profiles a good estimate for the TWMS instability growth rate is given by the growth
rate of the elliptical instability of the centre, i.e. σ = 9

16
s0 where s0 is the vortex-centre

strain rate.
The nature of the vorticity profile has an indirect effect on the TWMS instability

growth rate as it modifies the ratio s0 between the external strain rate at infinity and
the strain rate in the vortex centre. In particular, this ratio is 2 for a Rankine vortex
while it is s0 ≈ 2.525 for the Gaussian vortex. One could then naturally address the
question whether there exists a vorticity profile that maximizes this ratio, and which,
consequently could maximize the growth rate. This issue is now addressed for a simple
class of vortices: the generalized Rankine vortices whose vorticity distribution is given
on figure 6. These vortices are characterized by the relative size of the ‘band’ around
the vortex core, i.e. by its width b − 1, (b > 1) and its strength a. After a long but
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Figure 6. Vorticity distribution of the generalized Rankine vortex.

straightforward calculation, an expression for s0 is obtained as

s0 =
2b2(1 + a(b2 − 1))

b2 + 1
2
a(b4 − 1) + 1

2
a2(b2 − 1)2

. (5.2)

If one allows negative a, this expression has no upper limit. Thus, the strain in the
vortex centre is a priori as large as wanted. However, vortices with a < 0 are unstable
with respect to centrifugal instability since (rVθ(r))

2 is no longer an increasing function
(Rayleigh criterion) in such a case. If one only considers centrifugally stable vortices,
s0 reaches a maximum value s0max = 4 in the limit of large circulation and small
strength (b2a � 1 with a � 1). Although this value is finite, it is nevertheless larger
than the one obtained for the vortices mentioned above.

5.2. Dependence on the stretching rate

For both Burgers and Lamb–Oseen vortices, the TWMS instability has been shown
to be transient due to the time variation of the product kδ. This effect is expressed in
the parameter ξ appearing in expression (4.36) for s∗c

2. The modulus of this parameter
actually gives the evolution time scale of the product kδ at the moment of resonance.
It can be written with dimensional quantities as

ξ =
δ2

0

ν

[
1

kδ

dkδ

dt

]
k0δ0=κ,t=0

, (5.3)

where δ0 and k0 are the initial values of radius and wavenumber at resonance. Time
variations are directly connected to the stretching field applied to the vortex. They
can be calculated for any time-varying stretching field U γ = (− 1

2
γ(t)x,− 1

2
γ(t)y, γ(t)z)

as follows. The evolution of the axial wavenumber is governed by (3.2). Its general
solution is

k(t) =
k0

S(t)
, (5.4)

where

S(t) = exp

(∫ t

0

γ(u)du

)
. (5.5)
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The variation of the radius can be obtained from the Lundgren transform (Lund-
gren 1982). This transform gives the vorticity field of any two-dimensional solution
subjected to an arbitrary perpendicular stretching field. For a time-varying stretching
rate γ(t), the vortex is then still given by (2.3) and (2.6a–d) but its radius now evolves
according to

δ2 =

δ2
0 + ν

∫ t

0

S(u)du

S(t)
. (5.6)

It follows that, in the general case,

kδ =
k0

(S(t))
3
2

(
δ2

0 + ν

∫ t

0

S(u)du

)1/2

. (5.7)

Expression (5.3) for ξ then becomes

ξ = − 3
2

(
γ∗ − 1

3

)
, (5.8)

where γ∗ is the dimensionless stretching rate at resonance:

γ∗ =
γ0δ

2
0

ν
. (5.9)

Expression (5.8) shows the effect of the stretching rate on the stability properties of
the vortex. Indeed, as |ξ| decreases, the gain increases, and consequently the vortex
becomes more unstable. It confers on stretching a non-trivial role: increasing the
stretching rate is destabilizing for the Lamb–Oseen vortex but stabilizing for the
Burgers vortex. Moreover, it is worth noting that for given radius and circulation, the
Lamb–Oseen vortex is more unstable than the Burgers vortex.

The most unstable vortex corresponds to a configuration for which γ∗ = 1
3
. For this

value, the maximum gain Gmax computed above becomes infinite which shows that
the present analysis no longer applies. This is actually due to the vanishing of the
time-dependent term in the amplitude equations (4.25a, b) which should be replaced
by the first non-zero term in the Taylor expansion of kδ. Both the scaling and the
amplitude equation are therefore modified in such a case but a similar analysis can
be carried out to compute the exact gain Gmax. All the time-dependent terms of
the Taylor expansion can even be zero, if kδ remains constant. This occurs for the
particular time-dependent stretching rate

γ(t) =
1

2t+ 3δ2
0/ν

, (5.10)

which is obtained by solving the differential equation deduced from (5.7). If one
agrees with the analysis of §3, this last case should be the most unstable configuration
since kδ does not leave the unstable band around the resonant wavenumber (see
figure 2a, b). One then expects the amplitude of the perturbation to evolve at leading
order according to A± ∝ exp(2nst) as long as second-order effects are negligible,

which means instability if s∗ � 1/R
1/2
Γ .

6. Discussion
In this paper, we have studied the linear stability of a family of stretched vortices

including the Burgers and Lamb–Oseen vortices subjected to a perpendicular strain
field in the limit of large Reynolds numbers RΓ , small strain and small stretching. The
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Figure 7. Level curves of the maximum gain Gmax in the (γ∗, s∗)-plane. The Burgers and Lamb–Oseen
vortices correspond to γ∗ = 1 and γ∗ = 0 respectively. Dotted line: Gmax = 103, solid line: Gmax = 104,
dashed line: Gmax = 105.

destabilization by the resonance mechanism described by Tsai & Widnall (1976) and
Moore & Saffman (1975) has been considered and generalized to take into account
viscous and stretching effects. The main modification has been the introduction of
a transient aspect in the instability mechanism which has been related to the time
evolution of the dimensionless axial wavenumber kδ of the resonant helical waves.

The instability properties have been connected to the values of two dimensionless

parameters: s∗ = 2sδ2R
1/2
Γ /Γ and γ∗ = γδ2/ν, where s is the perpendicular strain

rate, γ the stretching rate, δ the vortex radius and Γ the circulation. The Burgers
and Lamb–Oseen vortices are two particular cases associated with the values γ∗ = 1
and γ∗ = 0 respectively. The maximum gain of amplitude of the helical waves has
been computed. The result is summarized on figure 7 which displays the level curves
of the maximum gain in the (γ∗, s∗)-plane. This graph characterizes the sensitivity of
the vortex to the resonance mechanism. In particular, if the vortex parameters (γ∗, s∗)
correspond to a point above the solid curve in figure 7, the amplitude gain of the
resonant waves is larger than 104. In such a case, the sensitivity is so important that
one expects the vortex not to survive. For the Burgers vortex, this condition reduces

to s/γ > 0.2R
1/2
Γ , which means that only strong biaxial configurations are destabilized

by resonance. For the particular stretching parameter γ∗ = 1
3
, the gain is exponentially

large (as RΓ → ∞) for all s∗ = O(1). For a fixed s∗ 6= 0, the most unstable vortex is
then always obtained as γ∗ → 1

3
. Note however that the vortices are linearly stable

with respect to infinitesimal perturbations since the gain is always finite.
The influence of the vorticity profile on the instability characteristics has also been

studied. We have noticed that the growth rate of TWMS instability for both Rankine
and Gaussian vortices is well approximated by the growth rate associated with the
elliptical instability of its core, i.e. σ ≈ 9

16
s0 where s0 is the perpendicular strain rate

in the vortex centre. But, we have shown that the ratio of this local strain rate to the
external strain rate depends on the vorticity profile and can even reach arbitrarily
large values for particular cases.
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Figure 8. Contour plot of the magnitude of the dimensionless vorticity where the perturbation is
such that A+ = A− and vθ/Vθ = 0.4 in r = 0. (a) Three-dimensional representation for ‖ω‖ = 0.09.
(b) Contour plots in the plane z = 0, the bold line represents the contour ‖ω‖ = 0.09.

The unstable mode is formed of two helical waves of azimuthal wavenumber
m = −1 and m = 1. There is a priori a discrete infinity of unstable axial wavenumbers.
But if viscous effects on the perturbation are considered (these effects are negligible in
the asymptotic analysis of §4), one expects the smallest non-zero wavenumber to be
selected. The basic vortex plus the unstable mode are displayed on figure 8. Note that
the two helices associated with the two helical modes compensate to form a sinuous
deformation of the vortex filament.

A large part of the paper was focused on the analysis of the transient growth
of the resonant helical waves. Amplitude equations (4.25a, b), which fully describe
the complex interactions of these waves in time, have been derived. They can be
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generalized to account for slow axial variation along the vortex by introducing a
dependence of the perturbation on the slow variable Z = z/ε (see e.g. Moore &
Saffman 1975). The resulting equations are

∂A+

∂T
− q∂A

+

∂Z
− iqξκTA+ − s∗nA− = 0, (6.1a)

∂A−

∂T
+ q

∂A−

∂Z
+ iqξκTA− − s∗nA+ = 0. (6.1b)

These equations allow a description of the destabilization process in the case of
localized perturbations as well as in a geometry confined in the z-direction. They also
show that a small change in the axial wavenumber can be treated as a mere time
shift.

In this paper, we have considered a particular perturbation composed of helical
modes with azimuthal wavenumber m = ± 1 but the present study can be easily
applied to other combinations of modes. Basically any combination of two waves
having the same frequency, the same axial wavenumber, and azimuthal wavenumbers
differing by 2 constitutes a configuration which resonates with the strain field. For
a bounded elliptical vortex with uniform vorticity, Waleffe (1989) showed that the
maximum growth rate of such combinations depends slightly on their azimuthal
wavenumber. This growth rate similarity could explain the rich dynamical behaviour
of vortices in experiments and numerical simulations of high-Reynolds-number flows
(Cadot et al. 1995; Arendt et al. 1998). Indeed, a combination of modes m = 0 and
m = 2 could account for the spliting of vortices while modes m = 1 and m = 3 could
be responsible for the formation of strands. However, for low-Reynolds-number flows,
viscosity is expected to strongly filter large azimuthal wavenumbers as well as large
axial wavenumbers. This may explain why only helical modes were observed in several
experiments (for instance, Leweke & Williamson 1998a and Gledzer & Ponomarev
1992).

Nevertheless, an improved understanding of the complex behaviour of vortices
observed in experiments probably requires the introduction of nonlinearities in the
present analysis. Very few results have been obtained so far. Waleffe (1989) considered
weakly nonlinear effects in the case of bounded elliptical flows. He showed that
nonlinearity tends to detune the axial wavenumbers of the resonant modes, and to
generate a rotation of the perturbation around the vortex axis, in agreement with the
local induction approximation for plane slender vortices (see Saffman 1992). Lifschitz
& Fabijonas (1996) and Fabijonas, Holm & Lifschitz (1997) studied the secondary
instability of unbounded circular and elliptical flows respectively. They obtained the
surprising result that the uniform basic flow plus an inertial wave could become
unstable with an unbounded growth rate. It would be very interesting to extend their
theory to the present framework. This could indeed give an alternative explanation
for the bursting of vortex filaments. We also pointed out above that vortices are also
subject to the tilting instability when they are placed in a strong biaxial strain field.
It would be interesting to analyse this instability in detail to fully understand its role
in real experimental configuration.

This work has benefitted from discussions with M. Rossi. We kindly thank him for
his interest and encouragement.
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